Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
1.
G Ital Nefrol ; 40(2)2023 Apr 27.
Article in English | MEDLINE | ID: covidwho-2314363

ABSTRACT

Background. Pregnant women are at high risk of Coronavirus disease 2019 (COVID-19) complications, including acute respiratory distress syndrome. Currently, one of the cornerstones in the treatment of this condition is lung-protective ventilation (LPV) with low tidal volumes. However, the occurrence of hypercapnia may limit this ventilatory strategy. So, different extracorporeal CO2 removal (ECCO2R) procedures have been developed. ECCO2R comprises a variety of techniques, including low-flow and high-flow systems, that may be performed with dedicated devices or combined with continuous renal replacement therapy (CRRT). Case description. Here, we report a unique case of a pregnant patient affected by COVID-19 who required extracorporeal support for multiorgan failure. While on LPV, because of the concomitant hypercapnia and acute kidney injury, the patient was treated with an ECCO2R membrane inserted in series after a hemofilter in a CRRT platform. This combined treatment reducing hypercapnia allowed LPV maintenance at the same time while providing kidney replacement and ensuring maternal and fetal hemodynamic stability. Adverse effects consisted of minor bleeding episodes due to the anticoagulation required to maintain the extracorporeal circuit patency. The patient's pulmonary and kidney function progressively recovered, permitting the withdrawal of any extracorporeal treatment. At the 25th gestational week, the patient underwent spontaneous premature vaginal delivery because of placental abruption. She gave birth to an 800-gram female baby, who three days later died because of multiorgan failure related to extreme prematurity. Conclusions. This case supports using ECCO2R-CRRT combined treatment as a suitable approach in the management of complex conditions, such as pregnancy, even in the case of severe COVID-19.


Subject(s)
COVID-19 , Continuous Renal Replacement Therapy , Pregnancy , Humans , Female , Carbon Dioxide , Hypercapnia/therapy , Continuous Renal Replacement Therapy/adverse effects , Extracorporeal Circulation/adverse effects , Extracorporeal Circulation/methods , COVID-19/complications , COVID-19/therapy , Placenta , Renal Replacement Therapy/adverse effects
2.
Pan Afr Med J ; 44: 132, 2023.
Article in English | MEDLINE | ID: covidwho-2312496

ABSTRACT

One of the rare consequences of COVID-19 is increasing blood carbon dioxide, which can lead to unconsciousness, dysrhythmia, and cardiac arrest. Therefore, in COVID-19 hypercarbia, non-invasive ventilation (with Bi-level Positive Airway Pressure, BiPAP) is recommended for treatment. If CO2 does not decrease or continues rising, the patient's trachea must be intubated for supportive hyperventilation with a ventilator (Invasive ventilation). The high morbidity and mortality rate of mechanical ventilation is an important problem of invasive ventilation. We launched an innovative treatment of hypercapnia without invasive ventilation to reduce morbidity and mortality. This new approach could open the window for researchers and therapists to reduce COVID death. To investigate the cause of hypercapnia, we measured the carbon dioxide of the airways (mask and tubes of the ventilator) with a capnograph. Increased carbon dioxide inside the mask and tubes of the device was found in a severely hypercapnic COVID patient in the Intensive Care Unit (ICU). She had a 120kg weight and diabetes disease. Her PaCO2 was 138mmHg. In this condition, she had to be under invasive ventilation and accept its complication or lethal risk but we decreased her PaCO2 with the placement of a soda lime canister in the expiratory pathway to absorb CO2 from the mask and ventilation tube. Her PaCO2 dropped from 138 to 80, and the patient woke up from drowsiness completely without invasive ventilation, the next day. This innovative method continued until PaCO2 reached 55 and she was discharged home 14 days later after curing her COVID. Soda lime is used for carbon dioxide absorption in anesthesia machines and we can research its application in hypercarbia state in ICU to postpone invasive ventilation for treatment of hypercapnia.


Subject(s)
COVID-19 , Hypercapnia , Humans , Female , Hypercapnia/etiology , Hypercapnia/therapy , Carbon Dioxide , COVID-19/therapy , Oxides
4.
Ann Thorac Surg ; 114(5): e307-e309, 2022 11.
Article in English | MEDLINE | ID: covidwho-1944287

ABSTRACT

Coronavirus disease 2019 pneumonia with respiratory failure refractory to maximum medical therapy has been successfully managed with venovenous extracorporeal membrane oxygenation. This report describes a process of using directed hypercapnia in 5 patients to wean them from prolonged extracorporeal support secondary to refractory hypercarbic respiratory failure.


Subject(s)
COVID-19 , Extracorporeal Membrane Oxygenation , Pneumonia , Respiratory Insufficiency , Humans , Hypercapnia/etiology , Hypercapnia/therapy , Respiratory Insufficiency/etiology , Respiratory Insufficiency/therapy
5.
Clin Hemorheol Microcirc ; 78(2): 199-207, 2021.
Article in English | MEDLINE | ID: covidwho-1352794

ABSTRACT

INTRODUCTION: Coronavirus disease-19 (COVID-19) is a new type of epidemic pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The population is generally susceptible to COVID-19, which mainly causes lung injury. Some cases may develop severe acute respiratory distress syndrome (ARDS). Currently, ARDS treatment is mainly mechanical ventilation, but mechanical ventilation often causes ventilator-induced lung injury (VILI) accompanied by hypercapnia in 14% of patients. Extracorporeal carbon dioxide removal (ECCO2R) can remove carbon dioxide from the blood of patients with ARDS, correct the respiratory acidosis, reduce the tidal volume and airway pressure, and reduce the incidence of VILI. CASE REPORT: Two patients with critical COVID-19 combined with multiple organ failure undertook mechanical ventilation and suffered from hypercapnia. ECCO2R, combined with continuous renal replacement therapy (CRRT), was conducted concomitantly. In both cases (No. 1 and 2), the tidal volume and positive end-expiratory pressure (PEEP) were down-regulated before the treatment and at 1.5 hours, one day, three days, five days, eight days, and ten days after the treatment, together with a noticeable decrease in PCO2 and clear increase in PO2, while FiO2 decreased to approximately 40%. In case No 2, compared with the condition before treatment, the PCO2 decreased significantly with down-regulation in the tidal volume and PEEP and improvement in the pulmonary edema and ARDS after the treatment. CONCLUSION: ECCO2R combined with continuous blood purification therapy in patients with COVID-19 who are criti-cally ill and have ARDS and hypercapnia might gain both time and opportunity in the treatment, down-regulate the ventilator parameters, reduce the incidence of VILI and achieve favorable therapeutic outcomes.


Subject(s)
COVID-19/complications , Carbon Dioxide/isolation & purification , Extracorporeal Circulation/methods , Hemofiltration/methods , Hypercapnia/therapy , Respiratory Distress Syndrome/therapy , SARS-CoV-2/isolation & purification , Aged , COVID-19/transmission , COVID-19/virology , Humans , Hypercapnia/physiopathology , Hypercapnia/virology , Male , Positive-Pressure Respiration , Respiration, Artificial , Respiratory Distress Syndrome/physiopathology , Respiratory Distress Syndrome/virology
SELECTION OF CITATIONS
SEARCH DETAIL